Darboux transformations in the inverse scattering problem
نویسندگان
چکیده
منابع مشابه
Singular matrix Darboux transformations in the inverse-scattering method
Singular Darboux transformations, in contrast to the conventional ones, have a singular matrix as a coefficient before the derivative. We incorporated such transformations into a chain of conventional transformations and presented determinant formulas for the resulting action of the chain. A determinant representation of the Kohlhoff–von Geramb solution to the Marchenko equation is given. PACS ...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولInverse scattering problem for the Impulsive Schrodinger equation with a polynomial spectral dependence in the potential
In the present work, under some di¤erentiability conditions on the potential functions , we rst reduce the inverse scattering problem (ISP) for the polynomial pencil of the Scroedinger equation to the corresponding ISP for the generalized matrix Scrödinger equation . Then ISP will be solved in analogy of the Marchenko method. We aim to establish an e¤ective algorithm for uniquely reconstructin...
متن کاملPhase equivalent chains of Darboux transformations in scattering theory
We propose a procedure based on phase equivalent chains of Darboux transformations to generate local potentials satisfying the radial Schrödinger equation and sharing the same scattering data. For potentials related by a chain of transformations an analytic expression is derived for the Jost function. It is shown how the same system of S-matrix poles can be differently distributed between poles...
متن کاملInvertible Darboux Transformations
For operators of many different kinds it has been proved that (generalized) Darboux transformations can be built using so called Wronskian formulae. Such Darboux transformations are not invertible in the sense that the corresponding mappings of the operator kernels are not invertible. The only known invertible ones were Laplace transformations (and their compositions), which are special cases o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ufa Mathematical Journal
سال: 2016
ISSN: 2074-1863,2074-1871
DOI: 10.13108/2016-8-4-42